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ABSTRACT 
Magnetic fields are crucial in controlling flow in various 

physical processes of significance. Magnetic fields are 

frequently used to pump, stir and stabilize liquid metal flows 

non-intrusively. One of these processes, which has significant 

application of a magnetic field, is continuous casting of steel, 

where different magnetic field configurations are used to 

control the turbulent steel flow in the mold to minimize defects 

in the cast steel. Recently, liquid metal MHD flows have been 

extensively studied for application to fusion reactor technology. 

This study has been undertaken to analyze the effect of 

magnetic field on mean velocities and turbulence parameters in 

the molten metal flows through a square duct. Direct Numerical 

Simulations without using a sub-grid scale (SGS) model have 

been used to characterize the three-dimensional transient flow. 

The coupled Navier-Stokes-MHD equations have been solved 

with a three-dimensional fractional-step numerical procedure. 

Convection as well as diffusion terms have been discretized 

using a central differencing scheme in space and the 2nd order 

Adams-Bashforth scheme for integration in time. Pressure-

velocity coupling has been resolved using the fractional-step 

method and the pressure Poisson equation has been solved 

using a multigrid solver. Because liquid metals have low 

magnetic Reynolds number, the induced magnetic field has been 

neglected and the electric potential method for magnetic field-

flow coupling has been implemented. The equation for electric 

potential has been also been calculated using a multigrid solver. 

The known electric potential and velocities then provide the 

current density which is used in the expression for Lorentz force 

in the momentum equations. Initially, laminar simulations in a 

square duct have been performed and results generated were 

compared with previous series solutions. Next, simulations of a 

non-MHD flow in a square duct at low Reynolds number were 

performed and satisfactorily compared with results of a 

previous DNS study. Subsequently, different levels of a 

magnetic field were applied to study its effect on the turbulence 

until the flow completely laminarized. Time-dependent and 

time-averaged flows have been studied through mean velocities 

and fluctuations, and power spectrums of instantaneous 

velocities. 

 

INTRODUCTION 
 Magnetic fields are effective in controlling flow in 

various physical processes of significance such as metal 

processing, MHD pumps, flow meters, plasma and fusion 

technology, to name a few (1). One such process is continuous 

casting of steel in which different magnetic field configurations 

are used to control the turbulent flow of steel in the mold to 

minimize defects in cast steel (2). When a magnetic field is 

applied to a flow field, the interaction of the current density 

with the magnetic field generates a Lorentz force, which then 

brakes the flow and alters the velocity field (3). In the case of 

turbulent flows, magnetic fields can relaminarize the flow and 

alter significantly the structure of the turbulent flow (4). 

Consequently the friction characteristics and mixing phenomena 

in turbulent flows subjected to magnetic fields can be 

significantly different from those without the magnetic field. 

Tailoring the magnetic field to alter the flow in the mold of the 

continuous caster of steel is a topic of significant practical 

interest (2). 

 

The common methodology used in many previous studies to 

simulate effects of magnetic field on turbulent flows has been 

the Reynolds-averaged approach (4-8). However, the 
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fundamental difficulty with such an approach is the modeling of 

the terms that alter the turbulent fluctuations due to the Lorentz 

forces (4). Specifically, it is difficult to predict the suppression 

of turbulence and modification of the flow structures through 

the time-averaged approach (4). Since the magnetic fields 

directly act on the turbulent fluctuations, a more rigorous 

method with solution of equations for the time-dependent three-

dimensional turbulent flow is required. Recently, with the 

significant improvement in computer speed, Direct Numerical 

Simulation (DNS) has gained importance as a complementary 

tool to experiments (9). In the present work, we have studied 

using DNS the effects of magnetic field on flow through a 

square duct.  

 

Extensive studies exist on turbulence in channel flows using 

DNS, Large Eddy Simulations and experiments (e.g.  Kim, 

Moin and Moser , Spalart, Moser and Moin (10-12)). 

Relatively, a fewer number of studies have considered flow in a 

square duct in which two inhomogeneous directions exist (13-

15). The first DNS with two inhomogeneous directions was 

performed by Gavrilakis (13). Standard finite difference scheme 

with 16 million nodes and a moderate Reynolds number of 4410 

were used. The turbulence-driven secondary flows were 

accurately predicted. Turbulent statistics showed good 

agreement with the channel data at the wall bisectors, including 

bulging of streamwise mean flow profile. Huser and Biringen 

(1993) used a time-splitting method with spectral/higher-order 

finite difference discretization on a staggered mesh to simulate 

turbulent square duct flow (14). In their study, the Reynolds 

number based upon friction velocity was taken to be 600 and 

96x101x101 grid points were used. Madabhushi and Vanka 

(1991, 1993) performed LES and DNS in a straight square duct 

using a mixed spectral-finite difference method (15-16). DNS at 

Reτ of 260 and LES at 360 were found to predict secondary 

flows and turbulence statistics correctly.  

 

Only a few previous studies are available of DNS of turbulent 

flow subjected to a magnetic field (17-21). Satake, Kunugi and 

Smolentsev (2002) performed DNS to investigate turbulent pipe 

flow in a transverse magnetic field at a moderate Reynolds 

number of 5300 and three Hartmann numbers of 5, 10, and 20 

(17). The skin friction, velocity profiles, turbulent intensities 

and turbulent kinetic energy budget were studied along the 

circumferential direction of the pipe. At horizontal locations 

close to wall, velocity profile was observed to become more 

rounded with Hartmann flattening seen at the top of the pipe. 

Lee and Choi (2001) performed DNS of flow in a channel to 

study the effect of magnetic field orientation on the pressure 

drop (18). They considered streamwise, wall-normal and 

spanwise magnetic fields and found increase in drag due to 

Hartmann effect in the wall normal magnetic field case. Satake, 

Kunugi, Takase and Ose (2006) studied the effect of magnetic 

field on wall bounded turbulence in a channel using DNS at a 

high Re of 45818 and Hartmann numbers of 32.5 and 65 (19).  

A uniform magnetic field was applied normal to the wall and 

various turbulent quantities were analyzed. Large scale 

structures were found to decrease in the core of the channel. 

Therefore, the difference between production and dissipation in 

the turbulent kinetic energy was found to be decreasing upon 

increasing Hartmann number in the central region of the 

channel.  

 

Zikanov and Thess (1998, 2004) studied the effect of magnetic 

field on the turbulence using DNS in a classical 3-D cube with 

all directions having periodic boundary conditions (20-21). 

Dependence of turbulence was studied on magnetic interaction 

parameter (called Stuart number). At a low Stuart number, 

turbulence was found to be three-dimensional and 

approximately isotropic while turbulence suppression was seen 

at large Stuart numbers (strong magnetic field). 

 

Kobayashi (2008) performed LES on a square duct with 

transverse magnetic field for Re=5300 and Re=29000 with 

64x64x64 and 128x128x128 grids respectively (22). At 

Re=5300, Hartmann layer as well as side-wall layers were 

found laminarizing together at nearly the same Hartmann 

number. At higher Reynolds number (Re=29000), the top and 

bottom Hartmann layers laminarized first, followed by the side-

wall layers. 

 

In the present work, we have conducted DNS of turbulent flow 

in a square duct subjected to a progressively increasing 

Hartmann number. The flow structures and mean velocities are 

studied for a Reynolds number around 5000. The computer 

code was initially validated for laminar flow in a square duct 

with a transverse magnetic field and results thus generated were 

compared with previously known series solutions. 

Subsequently, simulations of flow in a square duct for a 

Reynolds number of 5500 have been performed without 

applying a magnetic field and results were compared with 

previous work of Gavrilakis (1992).Afterwards, a magnetic 

field was applied in the vertical direction and computations with 

64x64x128 and 80x80x256 cells were performed. Mean and 

RMS velocities, and power spectrums have been collected and 

analyzed. The effect of magnetic field on friction losses in the 

duct is also evaluated. 

NOMENCLATURE 

v
r

( , ,u v w ): velocity vector (x-, y- and z- components). 

/wuτ τ ρ= : friction velocity 

 p : Pressure 

µ , ν : Dynamic and kinematic viscosities 

L
F
r

: Lorentz force vector 

ρ : Density 

x , y , z : x-, y- and z- coordinates 

Rem: Magnetic Reynolds number 
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J
r

(
x

J ,
y

J ,
z

J ):Current density (x-, y- and z- components) 

0B
r

: Externally applied magnetic field vector 

φ : Electric potential 

h
D : Hydraulic diameter 

σ : Electrical conductivity 

Re : Reynolds number 

Ha : Hartmann number 

/y yuτ ν+ = : normalized wall distance   

N : Magnetic interaction parameter 

Superscript:  n : n
th

  time level 

 
GOVERNING EQUATIONS FOR A 
MAGNETOHYDRODYNAMIC FLOW 
It is well-known that when an electrically conducting material 

moves through a magnetic field, an electric current is induced. 

This induced electric current interacts with the magnetic field 

and produces a force (J x B) on the flow field, called the 

Lorentz force. This Lorentz force brakes the flow and therefore 

opposes the very mechanism that created it.   The following 

equations mathematically describe the flow evolution for an 

incompressible flow (23). 

 
Continuity equation: 

                      0v∇ ⋅ =
r

                                                          (1)                                                                                                                                                              

 
Momentum equations (x-, y- and z-)   

( ) L

v
vv p v F

t
ρ µ

∂ 
+ ∇ ⋅ = −∇ + ∇ ⋅ ∇ + 

∂ 

r
rrr r

                (2) 

Since magnetic Reynolds number (Rem) is < 1 in liquid metals, 

induced magnetic field because of the induced electric current 

can be neglected. After neglecting the induced magnetic field, 

the electric potential method can be used to determine the 

current and the Lorentz force by the following equations (3). 

                    0L
F J B= ×
r r r

                                                      (3) 

                   ( )0J v Bσ φ= −∇ + ×
r rr

                                     (4) 

                    0J∇ ⋅ =
r

                                                            (5) 

By inserting current from Eq.(4) into the conservation of charge 

Eq.(5), Poisson’s equation for electric potential can be derived, 

given as 

                   ( )2

0v Bφ∇ = ∇ ⋅ ×
rr

                                 (6) 

There are essentially two non-dimensional parameters that 

govern the flow field. They are the Reynolds and Hartmann 

numbers which are defined as, 

0Re h m
h

D u
Ha D B

σ

ν ρν
= =  

where, Dh is the hydraulic diameter, B0 is the applied magnetic 

field, ν is kinematic viscosity, ρ is density and σ is the electrical 

conductivity of the fluid. 

 
PHYSICAL DOMAIN AND BOUNDARY CONDITIONS 
The physical and computational domains considered in this 

study are shown in Fig. 1. Two directions of the domain are 

bounded by walls, whereas the main flow direction is 

considered to be periodic. A constant and uniform magnetic 

field is applied in the vertical (y) direction. The size of the 

domain is 1 unit in the x and y directions and 2π in the z 

direction. This is discretized with 32x32x64, 64x64x128 and 

80x80x256 cells for the different cases studied. No-slip and 

insulated wall boundary conditions have been used for the sides 

and top and bottom walls. Thus, 

0v =
r

, 0 0
y

J
y

φ∂
= ⇒ =

∂
 at top and bottom walls 

0v =
r

, 0 0
x

J
x

φ∂
= ⇒ =

∂
 at side walls 

 
Fig. 1 Physical and computational domain 

 

NUMERICAL METHOD  
The three-dimensional coupled equations have been discretized 

using the finite volume method. Pressure-velocity coupling has 

been resolved through the fraction step method (24) with 

explicit formulation of diffusion and convection in the 

momentum equations. The method consists of the following 

steps.  

x-momentum equation: 

( )
2 2 2

2 2 2

n

n

u

u u u u u u
H u v w

x y z x y z
ν

  ∂ ∂ ∂ ∂ ∂ ∂
= − − − + + +  

∂ ∂ ∂ ∂ ∂ ∂  
 

( )
11 1

nn n
n

u

u u p
H

t xρ

++ − ∂ 
= −   

∆ ∂  
            (7) 

y-momentum equation: 



 4 Copyright © 2009 by ASME 

( )
2 2 2

2 2 2

n

n

v

v v v v v v
H u v w

x y z x y z
ν

  ∂ ∂ ∂ ∂ ∂ ∂
= − − − + + +  

∂ ∂ ∂ ∂ ∂ ∂  
 

( )
11 1

n
n n

n

v

v v p
H

t yρ

++   − ∂
= −   

∆ ∂  
            (8) 

z-momentum equation: 

( )
2 2 2

2 2 2

n

n

w

w w w w w w
H u v w

x y z x y z
ν

  ∂ ∂ ∂ ∂ ∂ ∂
= − − − + + +   ∂ ∂ ∂ ∂ ∂ ∂  

 

( )
11 1

nn n
n

w

w w p
H

t zρ

++ − ∂ 
= −   

∆ ∂  
                          (9) 

( ) ( ) ( )

11 1

1 1 1
* * *

nn n

n n n

p p p

x x y y z z

u v w

t x y z

ρ

++ +

+ + +

  ∂ ∂ ∂ ∂ ∂ ∂   
 + +     ∂ ∂ ∂ ∂ ∂ ∂     

 ∂ ∂ ∂
 = + +
 ∆ ∂ ∂ ∂
 

          (10) 

( )
1

1*1

+
++










∂

∂∆
−=

n
nn

x

pt
uu

ρ
          (11) 

( )
1

1*1

+
++










∂

∂∆
−=

n

nn

y

pt
vv

ρ
          (12) 

                           ( )
1

1
1 *

n
n

n t p
w w

zρ

+
+

+ ∆ ∂ 
= −  

∂ 
               (13)                  

Convection and diffusion terms have been discretized using 

second order central differencing scheme in space. Time 

integration has been achieved using explicit second order 

Adams-Bashforth scheme. A multigrid solver has been used to 

solve for pressure Poisson’s equation. 

 

With known velocity and pressure fields, the Poisson’s equation 

for electric potential is solved for φ  using a multigrid solver. 

The Lorentz force is then calculated and added as a source term 

in momentum equations for next time step. 

 

RESULT AND DISCUSSION 
We now present the results of various calculations performed in 

this study. First, we compared our results for a zero Hartmann 

number with those of Gavrilakis (13). Fig. 2(a) and (b) shows a 

snapshot of the instantaneous and mean flow field, shown as 

contours of the streamwise velocity and vectors of the cross-

sectional velocities. Also shown is an instantaneous picture of 

the flow at a y+ of 8.85 in Fig. 2(c). Regions of high and low 

speed streaks are clearly visible at the plane signifying the near 

wall structures.  

 

Fig. 3(a) shows a comparison of the normalized axial velocity 

with results of Gavrilakis (1992) (13) at Re=4410. Mean axial 

velocity along horizontal bi-sector of the current simulation is 

found to match well in the core but small differences are 

observed close to wall which may be due to the slightly 

different Reynolds numbers.  Fig. 3(b) shows the comparison of 

axial velocity normalized with friction velocity along diagonal 

of the duct with Gavrilakis (1992) (13). The slight mismatch in 

the core can be mainly attributed to the difference in the friction 

velocity due to different Reynolds numbers.  

 

 
Fig. 2(a) Instantaneous axial velocity contours with 

secondary velocity vectors 

 

 

 
Fig. 2(b) Mean axial velocity contours with 

secondary velocity vectors 

 

 
Fig. 2(c) Instantaneous velocity contours at y

+
=8.85 
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Fig. 3(a) Mean velocity comparison along horizontal 

bisector with Gavrilakis (13) 

 

 
Fig. 3(b) Mean velocity comparison along diagonal 

with Gavrilakis (13) 

 

Results with the magnetic field 
Fig. 4 shows comparisons of the normalized axial velocity with 

analytical series solution of Muller and Buhler (25) for a 

laminarized square duct flow with transverse magnetic field. 

Here the flow was initiated with a dp/dz corresponding to 

Re=5500 and a perturbation (1% of the mean) in three 

velocities was applied for the initial 1500 timesteps to initiate 

turbulence. A strong magnetic field corresponding to Ha=60 

was applied. The strong magnetic field was found to damp 

turbulence with flattening of velocity close to top and bottom 

walls. Axial velocity close to side-walls is found to agree with 

the laminar profile.  

 

 
Fig.4 Comparison of laminarized solution with Muller & 

Buhler (15) with a (64x64x128) grid 

 

Fig.5(a) shows normalized mean axial velocity along horizontal 

bisector for various Hartmann numbers. A constant mean 

pressure gradient corresponding to Re = 5300 at zero Hartmann 

number was applied for all cases. The Reynolds number 

therefore varied based on the magnetic braking and the velocity 

gradients.  It can be seen that at Ha=21.2, Reynolds number 

increased from Re=5300 to 5978. This initially appears counter 

intuitive because rather than providing more resistance to the 

flow the magnetic field is seen to assist the flow. However, by 

suppressing the turbulence the wall friction can decrease and 

thereby the Reynolds number can increase. In Fig. 5, the current 

results (which give a Re of 5978 for Ha = 21.2) are compared 

with results of Kobayashi (22). Also compared are results for 

Re = 5457 obtained by a coarser grid.  Fig-5(b) compares 

normalized axial velocity along vertical bisector for various 

Hartmann numbers. The agreement with results of Kobayashi  

(22) for Ha = 21.2 is good. Upon further increasing the 

Hartmann number, velocity flattening takes over the turbulence 

suppression and velocity starts increasing close to wall and 

decreasing in central region (i.e. flattening effect close to side 

wall and in the central region). Upon further increase in the 

Hartmann number, the velocity profiles close to top-bottom and 

side-walls continue to flatten and thus lead to higher velocity 

gradients and frictional losses. 

 

 
Fig-5(a) Mean axial velocity along horizontal bisectors in 

various cases 

 

 
Fig-5(b) Mean axial velocity along vertical bisectors in 

various cases 
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Fig. 6(a) and (b) shows the instantaneous and mean velocities at 

a mid-axial direction cross-section for Re=5978 and Ha=21.2 

case. It can be seen that the secondary flows are significantly 

modified in the presence of the magnetic field. Instead of going 

into the corners and causing higher axial velocity in the corners, 

the secondary flows are directed more towards the top and 

bottom walls and therefore causing the axial velocity profile to 

be slightly lifted towards top and bottom. Because of above 

behavior, reverse secondary velocities (i.e. from wall towards 

center) are at the centers of top and bottom walls, thus causing 

greater bulging in axial velocity at these locations. Fig-6(c) 

gives the axial velocity contours plotted at a plane at y
+
=8.85.  

 

 
(Re=5978, Ha=21.2, 80x80x256) 

Fig. 6(a) Instantaneous axial velocity contours with 

secondary velocity vectors 

 

 
(Re=5978, Ha=21.2, 80x80x256) 

Fig. 6(b) Mean axial velocity contours with 

secondary velocity vectors 
 

 
(Re=5978, Ha=21.2, 80x80x256) 

Fig.6(c) Instantaneous velocity contours at y
+
=8.85 

 

Fig.7(a) and (b) shows the instantaneous and mean axial 

velocity superimposed with secondary velocity vectors at 

Ha=24.38. Laminarization is clearly seen at high Hartmann 

number with velocity flattening in the central, top and bottom 

regions. Secondary flows are completely dampened and flow 

becomes mainly dominated by flat axial velocity without any 

bulging in the corners. Velocity close to side-walls follows 

laminar hydrodynamic velocity profile. Fig. 7(c) gives 

instantaneous velocity plotted at y
+
=8.85, with clearly showing 

laminarization along the length of the duct as well. 

 

 
(Re=3350, Ha=24.38) 

Fig.7(a) Instantaneous axial velocity contours with 

secondary velocity vectors 

 

 
(Re=3350, Ha=24.38) 

Fig.7(b) Mean axial velocity contours with 

secondary velocity vectors 
 

 
(Re=3350, Ha=24.38) 

Fig.7(c) Instantaneous velocity contours at y
+
=8.85 
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Fig. 8(a) shows the RMS of axial velocity fluctuations along 

horizontal bi-sector for various cases. As seen at low Hartmann 

numbers, RMS of velocity fluctuations close to side-walls is 

nearly the same as the non-magnetic case. Current simulation 

with Ha=21.2 and 80x80x256 mesh is found to match with 

Kobayashi’s results close to the wall. However in the core of the 

duct, RMS fluctuations are much larger than reported by 

Kobayashi (22). For stronger magnetic field (Ha=22.26), 

turbulence is dampened close to side-walls but increases in the 

core. At further higher Hartman number (for example 

Ha=24.38), velocity fluctuations are completely dampened and 

the flow becomes laminar.  

 

Fig-8(b) gives RMS of the axial velocity fluctuations along the 

vertical bi-sector for same cases. Close to top and bottom walls, 

because the magnetic field is perpendicular to the induced 

current, Lorentz force is strong and velocity fluctuations are 

damped even at lower Hartmann numbers. Velocity fluctuations 

at top and bottom walls are suppressed at lower Hartmann 

numbers than near side walls. Also, upon increasing the 

Hartmann number, velocity fluctuations are shifted from the 

wall region to the core of the duct before completely 

suppressed. However, turbulence close to side- and top-bottom 

walls is completely suppressed at around the same Hartmann 

number (~23). This finding is consistent with Kobayshi’s (22) 

finding at moderate Reynolds number.  

 

Fig-8 (a) RMS of axial velocity fluctuations along horizontal 

bisector 

 

Fig-9(a), (b) and (c) gives the power spectrum of instantaneous 

velocity plotted as a function of wave number at the center, top-

mid (0, 0.5D) and front-mid (0.5D, 0) locations at the cross-

section of the duct based upon Taylor’s frozen flow hypothesis 

(i.e. advection of turbulence is time independent) for Ha=21.2 

case. Power spectrum in the inertial sub-range is found to be 

following -5/3 law at all three locations. This is consistent with 

Vorobev et al’s work (26) for low magnetic interaction 

(
2

0 hB D
N

v

σ

ρ
= =~0.1, i.e. much smaller than 5) situations which 

is appropriate here. 

Fig-8 (b) RMS of axial velocity fluctuations along vertical 

bisector 

 

   

 
Fig-9(a) Power spectrum of instantaneous velocity (center) 

 

 

 
Fig-9(b) Power spectrum of instantaneous velocity (front-mid) 
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Fig-9(c) Power spectrum of instantaneous velocity (top-mid) 

 

SUMMARY AND CONCLUSIONS 
The present study has shown the effects of magnetic field on the 

turbulent flow development in a square duct at a nominal 

Reynolds number of 5500. The magnetic field is gradually 

varied from a low Hartmann number to a super-critical value 

when the flow becomes laminar. The grid used in the 

computations is fine enough that the simulations performed can 

be considered to be Direct Numerical Simulations (DNS). No 

sub-grid closure model has been included in the simulations.  

The simulations were performed by keeping a constant 

streamwise pressure gradient and varying the magnetic field. 

Thus the Reynolds numbers achieved decreased with increase 

of the magnetic field.  

 

The magnetic field was found to suppress turbulence and flatten 

the velocity profile across the cross-section. Velocity flattening 

close to walls increases wall shear stress however turbulence 

suppression reduces it. Effect of these two phenomena is clearly 

seen in the case of Ha=21.2 case where Lorentz force assisted 

the pressure gradient and caused a higher flow rate. At higher 

Hartmann numbers (i.e. going from Ha=21.2 to Ha=22.26), 

velocity flattening takes over the suppression of turbulence and 

laminarization of the flattened velocity profile is seen to 

increase the friction factor from the minima. Power spectrum of 

instantaneous axial velocity at three selected locations is found 

to be following the -5/3 law. At Ha=21.2, maximum range of 

frequencies are reported at the front-mid location because the 

effect of the Lorentz force was not appreciable at this location 

for this Hartmann number.  
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